API Reference
Symbols and Terms
SymbolicUtils.@syms
— Macro@syms <lhs_expr>[::T1] <lhs_expr>[::T2]...
For instance:
@syms foo::Real bar baz(x, y::Real)::Complex
Create one or more variables. <lhs_expr>
can be just a symbol in which case it will be the name of the variable, or a function call in which case a function-like variable which has the same name as the function being called. The Sym type, or in the case of a function-like Sym, the output type of calling the function can be set using the ::T
syntax.
Examples:
@syms foo bar::Real baz::Int
will create
variable foo
of symtype Number
(the default), bar
of symtype Real
and baz
of symtype Int
@syms f(x) g(y::Real, x)::Int h(a::Int, f(b))
creates 1-argf
2-argg
and 2 arg h
. The second argument to h
must be a one argument function-like variable. So, h(1, g)
will fail and h(1, f)
will work.
Missing docstring for SymbolicUtils.Sym
. Check Documenter's build log for details.
SymbolicUtils.symtype
— Functionsymtype(x)
Returns the numeric type of x
. By default this is just typeof(x)
. Define this for your symbolic types if you want SymbolicUtils.simplify
to apply rules specific to numbers (such as commutativity of multiplication). Or such rules that may be implemented in the future.
Missing docstring for SymbolicUtils.Term
. Check Documenter's build log for details.
Missing docstring for SymbolicUtils.Add
. Check Documenter's build log for details.
Missing docstring for SymbolicUtils.Mul
. Check Documenter's build log for details.
Missing docstring for SymbolicUtils.Pow
. Check Documenter's build log for details.
SymbolicUtils.promote_symtype
— Functionpromote_symtype(f, Ts...)
The result of applying f
to arguments of symtype
Ts...
julia> promote_symtype(+, Real, Real)
Real
julia> promote_symtype(+, Complex, Real)
Number
julia> @syms f(x)::Complex
(f(::Number)::Complex,)
julia> promote_symtype(f, Number)
Complex
When constructing Term
s without an explicit symtype, promote_symtype
is used to figure out the symtype of the Term.
promote_symtype(f::FnType{X,Y}, arg_symtypes...)
The output symtype of applying variable f
to arguments of symtype arg_symtypes...
. if the arguments are of the wrong type then this function will error.
Rewriters
SymbolicUtils.@rule
— Macro@rule LHS => RHS
Creates a Rule
object. A rule object is callable, and takes an expression and rewrites it if it matches the LHS pattern to the RHS pattern, returns nothing
otherwise. The rule language is described below.
LHS can be any possibly nested function call expression where any of the arguments can optionally be a Slot (~x
) or a Segment (~~x
) (described below).
If an expression matches LHS entirely, then it is rewritten to the pattern in the RHS Segment (~x
) and slot variables (~~x
) on the RHS will substitute the result of the matches found for these variables in the LHS.
Slot:
A Slot variable is written as ~x
and matches a single expression. x
is the name of the variable. If a slot appears more than once in an LHS expression then expression matched at every such location must be equal (as shown by isequal
).
Example:
Simple rule to turn any sin
into cos
:
julia> @syms a b c
(a, b, c)
julia> r = @rule sin(~x) => cos(~x)
sin(~x) => cos(~x)
julia> r(sin(1+a))
cos((1 + a))
A rule with 2 segment variables
julia> r = @rule sin(~x + ~y) => sin(~x)*cos(~y) + cos(~x)*sin(~y)
sin(~x + ~y) => sin(~x) * cos(~y) + cos(~x) * sin(~y)
julia> r(sin(a + b))
cos(a)*sin(b) + sin(a)*cos(b)
A rule that matches two of the same expressions:
julia> r = @rule sin(~x)^2 + cos(~x)^2 => 1
sin(~x) ^ 2 + cos(~x) ^ 2 => 1
julia> r(sin(2a)^2 + cos(2a)^2)
1
julia> r(sin(2a)^2 + cos(a)^2)
# nothing
Segment:
A Segment variable is written as ~~x
and matches zero or more expressions in the function call.
Example:
This implements the distributive property of multiplication: +(~~ys)
matches expressions like a + b
, a+b+c
and so on. On the RHS ~~ys
presents as any old julia array.
julia> r = @rule ~x * +((~~ys)) => sum(map(y-> ~x * y, ~~ys));
julia> r(2 * (a+b+c))
((2 * a) + (2 * b) + (2 * c))
Predicates:
There are two kinds of predicates, namely over slot variables and over the whole rule. For the former, predicates can be used on both ~x
and ~~x
by using the ~x::f
or ~~x::f
. Here f
can be any julia function. In the case of a slot the function gets a single matched subexpression, in the case of segment, it gets an array of matched expressions.
The predicate should return true
if the current match is acceptable, and false
otherwise.
julia> two_πs(x::Number) = abs(round(x/(2π)) - x/(2π)) < 10^-9
two_πs (generic function with 1 method)
julia> two_πs(x) = false
two_πs (generic function with 2 methods)
julia> r = @rule sin(~~x + ~y::two_πs + ~~z) => sin(+(~~x..., ~~z...))
sin(~(~x) + ~(y::two_πs) + ~(~z)) => sin(+(~(~x)..., ~(~z)...))
julia> r(sin(a+3π))
julia> r(sin(a+6π))
sin(a)
julia> r(sin(a+6π+c))
sin((a + c))
Predicate function gets an array of values if attached to a segment variable (~~x
).
For the predicate over the whole rule, use @rule <LHS> => <RHS> where <predicate>
:
julia> @syms a b;
julia> predicate(x) = x === a;
julia> r = @rule ~x => ~x where predicate(~x);
julia> r(a)
a
julia> r(b) === nothing
true
Note that this is syntactic sugar and that it is the same as something like @rule ~x => f(~x) ? ~x : nothing
.
Context:
In predicates: Contextual predicates are functions wrapped in the Contextual
type. The function is called with 2 arguments: the expression and a context object passed during a call to the Rule object (maybe done by passing a context to simplify
or a RuleSet
object).
The function can use the inputs however it wants, and must return a boolean indicating whether the predicate holds or not.
In the consequent pattern: Use (@ctx)
to access the context object on the right hand side of an expression.
SymbolicUtils.Rewriters
— ModuleA rewriter is any function which takes an expression and returns an expression or nothing
. If nothing
is returned that means there was no changes applicable to the input expression.
The Rewriters
module contains some types which create and transform rewriters.
Empty()
is a rewriter which always returnsnothing
Chain(itr)
chain an iterator of rewriters into a single rewriter which applies each chained rewriter in the given order. If a rewriter returnsnothing
this is treated as a no-change.RestartedChain(itr)
likeChain(itr)
but restarts from the first rewriter once on the first successful application of one of the chained rewriters.IfElse(cond, rw1, rw2)
runs thecond
function on the input, appliesrw1
if cond returns true,rw2
if it returns falseIf(cond, rw)
is the same asIfElse(cond, rw, Empty())
Prewalk(rw; threaded=false, thread_cutoff=100)
returns a rewriter which does a pre-order traversal of a given expression and applies the rewriterrw
. Note that ifrw
returnsnothing
when a match is not found, thenPrewalk(rw)
will also return nothing unless a match is found at every level of the walk.threaded=true
will use multi threading for traversal.thread_cutoff
is the minimum number of nodes in a subtree which should be walked in a threaded spawn.Postwalk(rw; threaded=false, thread_cutoff=100)
similarly does post-order traversal.Fixpoint(rw)
returns a rewriter which appliesrw
repeatedly until there are no changes to be made.FixpointNoCycle
behaves likeFixpoint
but instead it appliesrw
repeatedly only while it is returning new results.PassThrough(rw)
returns a rewriter which ifrw(x)
returnsnothing
will instead returnx
otherwise will returnrw(x)
.
Simplify
SymbolicUtils.simplify
— Functionsimplify(x; expand=false,
threaded=false,
thread_subtree_cutoff=100,
rewriter=nothing)
Simplify an expression (x
) by applying rewriter
until there are no changes. expand=true
applies expand
in the beginning of each fixpoint iteration.
By default, simplify will assume denominators are not zero and allow cancellation in fractions. Pass simplify_fractions=false
to prevent this.
SymbolicUtils.expand
— Functionexpand(expr)
Expand expressions by distributing multiplication over addition, e.g., a*(b+c)
becomes ab+ac
.
expand
uses replace symbols and non-algebraic expressions by variables of type variable_type
to compute the distribution using a specialized sparse multivariate polynomials implementation. variable_type
can be any subtype of MultivariatePolynomials.AbstractVariable
.
SymbolicUtils.substitute
— Functionsubstitute(expr, dict; fold=true)
substitute any subexpression that matches a key in dict
with the corresponding value. If fold=false
, expressions which can be evaluated won't be evaluated.
julia> substitute(1+sqrt(y), Dict(y => 2), fold=true)
2.414213562373095
julia> substitute(1+sqrt(y), Dict(y => 2), fold=false)
1 + sqrt(2)
Utilities
SymbolicUtils.@timerewrite
— Macro@timerewrite expr
If expr
calls simplify
or a RuleSet
object, track the amount of time it spent on applying each rule and pretty print the timing.
This uses TimerOutputs.jl.
Example:
julia> expr = foldr(*, rand([a,b,c,d], 100))
(a ^ 26) * (b ^ 30) * (c ^ 16) * (d ^ 28)
julia> @timerewrite simplify(expr)
────────────────────────────────────────────────────────────────────────────────────────────────
Time Allocations
────────────────────── ───────────────────────
Tot / % measured: 340ms / 15.3% 92.2MiB / 10.8%
Section ncalls time %tot avg alloc %tot avg
────────────────────────────────────────────────────────────────────────────────────────────────
ACRule((~y) ^ ~n * ~y => (~y) ^ (~n ... 667 11.1ms 21.3% 16.7μs 2.66MiB 26.8% 4.08KiB
RHS 92 277μs 0.53% 3.01μs 14.4KiB 0.14% 160B
ACRule((~x) ^ ~n * (~x) ^ ~m => (~x)... 575 7.63ms 14.6% 13.3μs 1.83MiB 18.4% 3.26KiB
(*)(~(~(x::!issortedₑ))) => sort_arg... 831 6.31ms 12.1% 7.59μs 738KiB 7.26% 910B
RHS 164 3.03ms 5.81% 18.5μs 250KiB 2.46% 1.52KiB
...
...
────────────────────────────────────────────────────────────────────────────────────────────────
(a ^ 26) * (b ^ 30) * (c ^ 16) * (d ^ 28)